
Rahul Kushwaha, Jan 28, 2024

Polaris
Enabling Transaction Priority in Optimistic 
Concurrency Control



Polaris: Introduction

• Optimistic Concurrency Control protocol which supports 
multiple levels of priority. 

• Transactions with same priority are fully optimistic. 

• Prioritization is accomplished via Reservation. 

• Benefits

• Significantly lower p999 tail latency. 

• Higher throughput for high contention workloads.



Optimistic Concurrency Control

• 3 Phases of a transaction: Read, Validation, and Write.

Img Src: [1]



Optimistic Concurrency Control

• Read: Concurrent, multiple transactions can be executing 
in parallel in this phase.

• Any mutation to the data is kept within the context of 
txn.

• Read your own writes.

• Validation: Serial, global critical section. 

• Write: Serial, global critical section.



Optimistic Concurrency Control

Txn 1 Txn 2

Time

x.v=1
x.d=2 y.v=3

y.d=4

Commit
Commit

.v = version

.d = data

Mutual Exclusion



Optimistic Concurrency Control

Txn 1 Txn 2

Time

x.v=1
x.d=2 x.v=1

x.d=4

Commit
Abort

.v = version

.d = data

Success
Failure



Silo

• In-Memory database designed for modern multicore 
machines(high processor count & lots of main memory).

• Is a Serializable Database.

• Uses a variant of Optimistic Concurrency Control. 

• Avoids centralized contention.

• Example: Requires writes to shared memory only during 
commit phase.



Silo
Details

• Is based on time periods called epochs. 

• Epochs form serialization points.

• A dedicated thread is responsible for perodically 
incrementing the epoch number(Global). 

• All worker threads access Global Epoch Number during 
commit.



Silo

• Per-Record field, TransactionID (TID)

• Data Version

• Latch



Polaris TID

• Each record has a TID field. 

1 bit for latch

4 bits for priority version

4 bits for priority

45 bits for data version

10 bits for reference counter



Algorithm 1: Record Access Protocol



Algorithm 2: Reservation Protocol

• Goal: Low-priority txn should not abort a high-priority 
txn.

• Example:

• Two txns, [A -> high priority, B -> low priority]

• If A has read the record but not committed, B should not 
be able to write to it, as that will cause A to abort.

• If B has read the record but not committed, A must be 
able to ignore B and proceed to read/write/commit. 



Algorithm 2: Reservation Protocol



Algorithm 3: Commit Protocol(Pt-1)



Algorithm 3: Commit Protocol(Pt-2)



Algorithm 4: Write CleanUp



Algorithm 4: Read CleanUp



Priority Assignment



Results: YCSB
Varying number of high priority & low priority txns

YCSB-A, r = 50%, w = 50%, Θ = 0.99



Results: YCSB



Results: YCSB

YCSB-C, r = 50%, w = 50%, Θ = 0.99



Results: TPC-C [High Contention]



Results: TPC-C [Low Contention]



Thank You!!



References

• [1]H.T.Kung and JohnT.Robinson.1981. On Optimistic Methods for Concurrency Control. 
ACMTrans.DatabaseSyst.6, 2(jun1981),213–226. https://doi.org/10.1145/319566.319567

• [2] Stephen Tu,Wenting Zheng,Eddie Kohler,Barbara Liskov, and Samuel Madden.2013. Speedy 
Transactions in Multicore In-Memory Databases.In Proceedings of the Twenty-Fourth ACM Symposiumon 
Operating Systems Principles (Farminton,Pennsylvania)(SOSP’13).Association for Computing 
Machinery,NewYork,NY,USA,18–32. https://doi.org/10.1145/2517349.2522713

https://doi.org/10.1145/319566.319567
http://doi.org/10.1145/2517349.2522713

