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Polaris
Enabling Transaction Priority in Optimistic 
Concurrency Control



Polaris: Introduction

• Optimistic Concurrency Control protocol which supports 
multiple levels of priority. 

• Transactions with same priority are fully optimistic. 

• Prioritization is accomplished via Reservation. 

• Benefits

• Significantly lower p999 tail latency. 

• Higher throughput for high contention workloads.



Optimistic Concurrency Control

• 3 Phases of a transaction: Read, Validation, and Write.
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Optimistic Concurrency Control

• Read: Concurrent, multiple transactions can be executing 
in parallel in this phase.

• Any mutation to the data is kept within the context of 
txn.

• Read your own writes.

• Validation: Serial, global critical section. 

• Write: Serial, global critical section.



Optimistic Concurrency Control
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Optimistic Concurrency Control
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Silo

• In-Memory database designed for modern multicore 
machines(high processor count & lots of main memory).

• Is a Serializable Database.

• Uses a variant of Optimistic Concurrency Control. 

• Avoids centralized contention.

• Example: Requires writes to shared memory only during 
commit phase.



Silo
Details

• Is based on time periods called epochs. 

• Epochs form serialization points.

• A dedicated thread is responsible for perodically 
incrementing the epoch number(Global). 

• All worker threads access Global Epoch Number during 
commit.



Silo

• Per-Record field, TransactionID (TID)

• Data Version

• Latch



Polaris TID

• Each record has a TID field. 

1 bit for latch

4 bits for priority version

4 bits for priority

45 bits for data version

10 bits for reference counter



Algorithm 1: Record Access Protocol



Algorithm 2: Reservation Protocol

• Goal: Low-priority txn should not abort a high-priority 
txn.

• Example:

• Two txns, [A -> high priority, B -> low priority]

• If A has read the record but not committed, B should not 
be able to write to it, as that will cause A to abort.

• If B has read the record but not committed, A must be 
able to ignore B and proceed to read/write/commit. 



Algorithm 2: Reservation Protocol



Algorithm 3: Commit Protocol(Pt-1)



Algorithm 3: Commit Protocol(Pt-2)



Algorithm 4: Write CleanUp



Algorithm 4: Read CleanUp



Priority Assignment



Results: YCSB
Varying number of high priority & low priority txns

YCSB-A, r = 50%, w = 50%, Θ = 0.99



Results: YCSB



Results: YCSB

YCSB-C, r = 50%, w = 50%, Θ = 0.99



Results: TPC-C [High Contention]



Results: TPC-C [Low Contention]



Thank You!!
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