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Morty: Introduction

® Storage system utilizing transaction re-execution to
increase throughput of Serializable and Interactive
Transactions.



Concurrency Control: Introduction

® Two categories
® Optimistic Concurrency Control
® Ex: TAPIR
® Pessimistic Concurrency Control

® Ex: Spanner



Optimistic Concurrency Control

® 3 Phases of a transaction: Read, Validation, and Write.
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Fig. 1. The three phases of a transaction.
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Optimistic Concurrency Control

® Read: Concurrent, multiple transactions can be executing
in parallel 1in this phase.

® Any mutation to the data is kept within the context of
txn.

® Read your own writes.
® Validation: Serial, global critical section.

® Write: Serial, global critical section.



Optimistic Concurrency Control

® Suffers from high abort rates under contention.



Pessimistic Concurrency Control

® Utilizes locking schemes to prevent transactions reading or
writing each others data.

® 2 Phase Locking

® Growing Phase: Locks are acquired. No lock can be
released in this phase.

® Shrinking Phase: Locks are release. No lock can be
acquired in this phase.

® Needs methods to prevent or resolve deadlocks.



Pessimistic Concurrency Control

® Suffers from deadlocks and lock thrashing under
contention.



How to make progress?

® Retry the transaction with exponential backoff when faced
with deadlock or abort.

® Blind guessing how to space transactions.
® Conservative guess: less progress due to contention.

® Liberal guess: higher latencies.



Morty: Serialization Windows

® Transactions reading and writing objects create
Serialization Windows.

® Serialization Window for an object
® Starts at the write of x whose value 1s being observed.

® Ends when the transaction’s write becomes visible.



Morty: Serialization Windows Example
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Morty: Conflicting Serialization Windows
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Morty: Idea

® Avoid conflicting serialization windows by re-arranging
transactions.

® When such a re-arrangement takes place, some part/s of the
txn being re-arranged need to be re-executed.

® During re-execution, Morty knows what needs to be re-
executed rather than blindly restarting the txn.

® Claim: Re-Execution 1s better.



Morty: Transaction Re-Execution

® Imagine there are two transactions, T1l & T2.
® Serialization window of T1l & T2 overlaps.
® Resolve the overlap by:
® Change the read-set of T2 using the write-set of T1.

® Order becomes: T1 -> T2



Morty: Transaction Re-Execution
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Figure 3. Transaction re-execution.

From the paper



Morty Design: Implementing Re-Execution

® Read Unrolling

® Transaction Re-Execution moves transactions forward in
time by 1invalidating read-set.

® Need application side logic to undo the effects of
previous reads.



Morty Design: Implementing Re-Execution

® Continuation-based API

® Control flow 1s specified using function calls.

void ProcessPayment(uint w_id, uint amt,
continuation_t cont) {
auto ctx = make_ptr<PaymentCtx>();
client.Begin(ctx);
client.Get(move(ctx), "warehouses", w_id,
[&client, &cont](ptr<PaymentCtx> ctx,
string val){
auto wh = ParseWarehouse(val);
wh.SetCol("ytd", wh.GetCol("ytd") + amt);
client.Put(ctx, "warehouses", w_id, wh);
client.Commit(move(ctx), cont);
DE
}

(b) CPS: explicit continuations define control flow dependencies.



Morty Design: Transaction Execution

® Uses MVTSO. Timestamp determines the transactions’s
position 1n total order.

® Integrates Concurrency Control with Replication.



Morty Design: Transaction Execution

® Begin(ctx)

® Coordinator starts a transaction by assigning a unique
verion = (ts, 1d). ts = local clock, 1d = coordinator
1d.

® Ver defines the expected position in total order.



Morty Design: Transaction Execution

® GET(ctx, key, cont)

® Coordinator sends the get, Get(ver, key), request to a
nearby replica.

® Replica replies with the key-value with the largest
version smaller than ver.



Morty Design: Transaction Execution

® PUT(ctx, key, cont)
® Coordinator adds (key, val) to write set.
® Boardcast a Put(ver, key, val) to all replicas.
® Replica checks for read-misses.

® Replica would have replied with current (key, value) to a
read already completed.

® In such cases, Replica replies to Coordinator with
GetReply(ver, val) to fix things.



Morty Design: Transaction Execution

® Re-Execution

® GetReply triggers a re-execution of the transaction.



Morty Design: Transaction Execution

® COMMIT(ctx, cont)

® Morty integrates concurrency control with Replication.



Morty Design: Transaction Execution

® Commit Result
® Commit protocol has 2 outcomes: Commit or Abort

® Morty can re-execute transactions. Therefore, each
transaction has multiple executions.

® Morty outcomes: Commit or Abandon
® Commit: If at least one execution 1s successful.

® Abort: If all executions are abandoned.



Morty Evaluation

® 3 Systems
® TAPIR (0CO)
® Spanner (PCC)(1n house implementation)

® Morty



Morty Evaluation

® 3 Setups: Simulated using Linux Traffic Control

® REG: Replicas located in different availability zones
of the same region.

® CON: Replicas loacted in different regions.
® GLO: Replicas in US and Europe.

® RTT simulation numbers are measured using AWS.



Morty Evaluation
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Figure 6. Morty achieves higher goodput at saturation on TPC-C with 100 warehouses.



Morty Evaluation
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Figure 7. Morty achieves higher throughput at saturation on Retwis with 10M keys and Zipf parameter 0.9.



Thank You!!



