
Rahul Kushwaha, May 9, 2024

Morty
Scaling Concurrency Control with Re-Execution

Morty: Introduction

• Storage system utilizing transaction re-execution to
increase throughput of Serializable and Interactive
Transactions.

Concurrency Control: Introduction

• Two categories

• Optimistic Concurrency Control

• Ex: TAPIR

• Pessimistic Concurrency Control

• Ex: Spanner

Optimistic Concurrency Control

• 3 Phases of a transaction: Read, Validation, and Write.

Img Src: [1]

Optimistic Concurrency Control

• Read: Concurrent, multiple transactions can be executing
in parallel in this phase.

• Any mutation to the data is kept within the context of
txn.

• Read your own writes.

• Validation: Serial, global critical section.

• Write: Serial, global critical section.

Optimistic Concurrency Control

• Suffers from high abort rates under contention.

Pessimistic Concurrency Control

• Utilizes locking schemes to prevent transactions reading or
writing each others data.

• 2 Phase Locking

• Growing Phase: Locks are acquired. No lock can be
released in this phase.

• Shrinking Phase: Locks are release. No lock can be
acquired in this phase.

• Needs methods to prevent or resolve deadlocks.

Pessimistic Concurrency Control

• Suffers from deadlocks and lock thrashing under
contention.

How to make progress?

• Retry the transaction with exponential backoff when faced
with deadlock or abort.

• Blind guessing how to space transactions.

• Conservative guess: less progress due to contention.

• Liberal guess: higher latencies.

Morty: Serialization Windows

• Transactions reading and writing objects create
Serialization Windows.

• Serialization Window for an object

• Starts at the write of x whose value is being observed.

• Ends when the transaction’s write becomes visible.

Morty: Serialization Windows Example

Txn#1 A B

Serialization
Window for A

Morty: Conflicting Serialization Windows

Txn#1 A B

Txn#2 A C

Morty: Idea

• Avoid conflicting serialization windows by re-arranging
transactions.

• When such a re-arrangement takes place, some part/s of the
txn being re-arranged need to be re-executed.

• During re-execution, Morty knows what needs to be re-
executed rather than blindly restarting the txn.

• Claim: Re-Execution is better.

Morty: Transaction Re-Execution

• Imagine there are two transactions, T1 & T2.

• Serialization window of T1 & T2 overlaps.

• Resolve the overlap by:

• Change the read-set of T2 using the write-set of T1.

• Order becomes: T1 -> T2

Morty: Transaction Re-Execution

From the paper

Morty Design: Implementing Re-Execution

• Read Unrolling

• Transaction Re-Execution moves transactions forward in
time by invalidating read-set.

• Need application side logic to undo the effects of
previous reads.

Morty Design: Implementing Re-Execution

• Continuation-based API

• Control flow is specified using function calls.

Morty Design: Transaction Execution

• Uses MVTSO. Timestamp determines the transactions’s
position in total order.

• Integrates Concurrency Control with Replication.

Morty Design: Transaction Execution

• Begin(ctx)

• Coordinator starts a transaction by assigning a unique
verion = (ts, id). ts = local clock, id = coordinator
id.

• Ver defines the expected position in total order.

Morty Design: Transaction Execution

• GET(ctx, key, cont)

• Coordinator sends the get, Get(ver, key), request to a
nearby replica.

• Replica replies with the key-value with the largest
version smaller than ver.

Morty Design: Transaction Execution

• PUT(ctx, key, cont)

• Coordinator adds (key, val) to write set.

• Boardcast a Put(ver, key, val) to all replicas.

• Replica checks for read-misses.

• Replica would have replied with current (key, value) to a
read already completed.

• In such cases, Replica replies to Coordinator with
GetReply(ver, val) to fix things.

Morty Design: Transaction Execution

• Re-Execution

• GetReply triggers a re-execution of the transaction.

Morty Design: Transaction Execution

• COMMIT(ctx, cont)

• Morty integrates concurrency control with Replication.

Morty Design: Transaction Execution

• Commit Result

• Commit protocol has 2 outcomes: Commit or Abort

• Morty can re-execute transactions. Therefore, each
transaction has multiple executions.

• Morty outcomes: Commit or Abandon

• Commit: If at least one execution is successful.

• Abort: If all executions are abandoned.

Morty Evaluation

• 3 Systems

• TAPIR (OCC)

• Spanner (PCC)(in house implementation)

• Morty

Morty Evaluation

• 3 Setups: Simulated using Linux Traffic Control

• REG: Replicas located in different availability zones
of the same region.

• CON: Replicas loacted in different regions.

• GLO: Replicas in US and Europe.

• RTT simulation numbers are measured using AWS.

Morty Evaluation

Morty Evaluation

Thank You!!

